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Abstract  

Recent empirical work has revealed that drivers have different lane change strategies. These strategies help to understand driver 
heterogeneity and decision stochasticity, which are both often lacking in microscopic simulation models. In this paper we 
generalize the lane change strategies in a theory for social interactions. The theory introduces a mechanism by which two new 
driver traits, ego-speed sensitivity and socio-speed sensitivity, endogenously influence other driver traits that govern lane change 
behaviour such as desired speed, desired headway and lane change desire. A key concept in this mechanism is that drivers are not 
just affected by what happens in front of them, but also by what they observe in their rear-view mirrors. The idea is that drivers 
reduce their headways to exert (social) pressure onto leading drivers (on the same or adjacent lanes), which may force them to 
increase speed, change lanes, or conversely, to refrain from changing lanes. We refer to this reduction of the headway as 
tailgating. Through an example implementation of the theory, we demonstrate that these social interactions may have a profound 
effect on several key (mesoscopic) traffic flow characteristics. Our results show that through these new driver interactions the 
number of lane changes increases, platoon lengths decrease, and headways become more varied. As such, the theory improves 
our description and understanding of traffic flow and consequently it paves the path for more realistic traffic simulation models. 
In addition, the proposed theory can be used for instance to better assess the impacts of automated vehicles that have different 
social awareness. 
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1. Introduction and motivation 

Microscopic traffic simulation models are widely used tools for the assessment of driver behaviour, road design, 
Intelligent Transport Systems (ITS) and autonomous vehicles. However, car-following and lane change behaviour 
are far from being fully understood. This is illustrated by lack of consensus when it comes to explanatory 
mechanisms for many of the characteristics we can observe in data. For example, the capacity drop has been 
attributed to many plausible mechanisms, from reaction time dynamics (Yuan et al., 2017), a memory effect of 
obtaining larger headways in congestion (Treiber and Helbing, 2003), limited vehicle acceleration (Lebacque, 2003), 
and lane changes (Laval and Daganzo, 2006), to dynamics in task difficulty (Saifuzzaman et al., 2017). That many 
possible mechanisms may result in similar macroscopic phenomena underlines that, depending on the application of 
microscopic simulation models, more sophisticated mechanisms are needed to shed light on the underlying meso- 
and microscopic dynamics of traffic flow.  

A move towards more sophistication is particularly relevant, given the increasing importance of understanding 
the consequences of many different ITS and autonomous driving capabilities which are likely (and already) changing 
traffic flow dynamics in fundamental ways. Recent literature suggests, for example, that (Cooperative) Adaptive 
Cruise Control ((C)ACC) not only directly controls car-following but may indirectly also change important 
underlying driver traits such as desired headway (Gouy et al., 2014), reduce the number of lane changes and cluster 
desired speed (Schakel et al., 2017) and may also reduce a drivers’ attentiveness or willingness to for instance 
cooperate with merging drivers (Nowakowski et al., 2015). That cooperation between drivers—a form of social 
interaction—is key in explaining traffic dynamics, is widely acknowledged by many authors, particularly for lane 
changing (Treiber and Kesting, 2009; Farah and Toledo, 2010). As Zheng (2014) puts it “in heavy traffic, a typical 
LC (lane change) decision-making process involves at least two players – the lane changer and the follower in the 
target lane”.  

A second crucial ingredient for adding more sophistication relates to heterogeneity in terms of driver traits and 
capabilities (and thus their behaviour). That heterogeneity is key to understanding traffic dynamics is also widely 
acknowledged (e.g. Treiber et al., 2006; Leclercq et al., 2016; Chen et al., 2012; Ossen and Hoogendoorn, 2011). As 
argued by van Lint and Calvert (2018), in most cases this heterogeneity is conceptualized exogenously (to the core 
car-following and/or lane change logic) by drawing key parameters (driver traits such as desired speed, or sensitivity 
to stimuli) from a presumed distribution over the population of drivers. To describe inter-driver heterogeneity 
(differences between drivers) this descriptive method is an effective approach. To describe intra-driver 
heterogeneity, e.g. the dynamics in the traits and preferences of a single driver along his trip, this approach is not 
effective, simply because it requires an a priori understanding of how these dynamics emerge. The logical alternative 
is to conceptualise these dynamics endogenously, so that driver heterogeneity emerges from the driver interactions 
and the prevailing circumstances themselves. For car-following, an increasing body of work seeks to explain driver 
heterogeneity in terms of the underlying cognition, e.g. by using the dynamics in task difficulty (van Lint and 
Calvert, 2018; Saifuzzaman et al., 2017) or in risk taking propensity (Hamdar et al., 2015). In this paper we aim to 
contribute to explaining intra-driver heterogeneity in driver behaviour, with a focus on social (i.e. multi-player) 
interactions, in which drivers willingly or unwillingly influence each other in their behaviour.  

The literature on these social interactions in driving is limited, which is likely due to the inherent difficulty of 
observing and quantifying the phenomenon. Nonetheless, this is not a new topic. Juhlin (1999) observed driving 
lessons and concluded from conversations between drivers and instructors that in traffic informal rules are applied 
leading to cooperation between drivers. The hypothesis here is that interactions between drivers rely on 
communicating intent. One such informal rule taught to drivers in many countries is to conform to ‘flow priority’ 
(i.e. “go with the flow”), which may go against formal priority in certain circumstances. Some research is available 
on cooperative (or courtesy) behaviour at motorway merges, where drivers create room for another driver to change 
lane. This can be achieved either by changing lane or by yielding (Knoop et al., 2018). Research is lacking, however, 
on the different strategies involving social interactions that drivers apply. A key assumption underlying most car-
following and lane changing models is that drivers—aside from preventing collisions—egoistically aim to drive at 
their desired speed, which is usually considered a stochastic variable, i.e. a different constant for each driver. A 
dynamic conceptualisation of desired speed is to use it as a means to operationalise the Task Capability Interface 
(TCI) model put forward by Fuller (2011). In such cases (e.g. (Hoogendoorn et al., 2013; Saifuzzaman et al., 2015; 
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van Lint and Calvert, 2018; Saifuzzaman et al., 2017)) the rationale for adapting desired speed is to (immediately) 
reduce perceived risk, so that drivers keep their mental workload within acceptable bounds (risk homeostasis).  

Keyvan-Ekbatani et al. (2016) and Knoop et al. (2018) make a case that adapting desired speed—and possibly 
other personal traits—may also be motivated by less operational reasons, that are related to lane changing, or more 
specifically, to lane change strategies which drivers adhere to for longer time periods. Their key finding—based on 
interviews and actual observations—is that lane change behaviour might be categorized into four strategies that 
essentially differ in terms of how much drivers are affected by their own preferences and by the preferences and 
behaviour of other drivers. Other researchers have argued from a game-theoretical point of view that in traffic, social 
dilemmas play an important role (Iwamura and Tanimoto, 2018). These authors also classify driver behaviour into 
four strategies along two dimensions: ‘lane changing if possible’ vs. ‘never lane changing’, and ‘hampering’ vs. 
‘cooperating’ for lane changes of others. This creates strategies very similar to those proposed by Keyvan-Ekbatani 
et al. (2016). With these concepts they show how in traffic “chicken-type” dilemmas occur near critical densities 
(one has to concede, and the one who does is worse off); and likewise, “prisoner-type” dilemmas occur at higher 
densities (both could be better off, but at the risk of being worse off due to the other). 

In this paper, we introduce a quantitative theory that explains these lane change strategies in terms of dynamics in 
driver traits (desired speed, desired headway and lane change desire) and the resulting social interactions. The scope 
of this theory is driving strategies on multi-lane motorways. As these strategies are intricately related to longitudinal 
aspects of driving, we refer to the strategies as driving strategies rather than lane change strategies. The proposed 
theory improves the understanding of car-following and lane changing, in particular the variability thereof. In our 
view, this is fundamentally important in the assessment of traffic operations in which increasing amounts of 
potentially “non-social” drivers (semi-automated vehicles) interact with human drivers.  

This paper is organised as follows. We discuss the starting points and requirements for the theory of driving 
strategies in section 2, and the theory itself in section 3. A modelling implementation of the theory is given in section 
4. Section 5 presents the methodology by which we assess the impacts of the theory, the results of which are 
presented in section 6. Finally, section 7 provides discussion and conclusions. 

2. Starting points and requirements for a theory of driving strategies 

In this section we discuss the starting points of our theory (assumption and hypotheses of behaviour) and the 
requirements in terms of emerging micro- and mesoscopic traffic phenomena. This section lists 12 considerations 
that are referred to later in the paper. 

 
2.1. Starting points: behavioural strategies and dynamics 

2.1.1. Lane change strategies 

Our objective is to describe a quantitative theory of driving strategies in line with the four lane change strategies 
described and empirically underpinned by Keyvan-Ekbatani et al. (2016):  

1. Speed leading; Drivers who adhere to their desired speed and are not easily persuaded to deviate from it. 
2. Speed leading with speed increase at overtaking (socio-speed leading); Drivers who adhere to their desired 

speed but are willing to increase speed or get out of the way by changing lane for drivers that want to drive 
faster. For brevity and easier reference we will refer to this strategy as socio-speed leading. 

3. Lane leading; Drivers who stay at a preferred lane so long as the speed does not deviate too much from the 
desired speed. This may be in a band of up to 40 km/h (Knoop et al., 2018). These drivers may dislike 
frequent lane changing, which also makes them less prone to change lanes for others. 

4. Traffic leading; Drivers who are similar to lane leading drivers but may increase speed or change lane to 
get out of the way. These are typically novice or insecure drivers. 

Clearly, these strategies govern the type of social interactions that may occur between drivers. 
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2.1.2. Behavioural dynamics (intra-driver heterogeneity) 

Our key hypothesis is that these four driving strategies can be explained by dynamic settings of driver traits, and 
specifically, by the dynamics in desired speed, desired headway and lane change desire. We choose these traits, 
because they can be found in most conceptualisations of lane changing, and generally—regardless of how they are 
conceptualised—affect (a) the eagerness of drivers to change lane and (b) gap availability for lane changing, i.e. 
how gaps and platoons are distributed over lanes. We discuss the presumed dynamics of these driver traits in 
relation to the social interactions below: 

5. Desired headway. The dynamics in desired headways are relevant for social interactions through a 
phenomenon that we will call tailgating. Put simply, over shorter time periods, drivers are willing to 
maintain very short headways to communicate intent (Juhlin, 1999), i.e. to pressure drivers to get out of the 
way. There is empirical evidence that the tailgating mechanism indeed takes place. Portouli et al. (2012) 
found empirically that close following is used to indicate overtake desire on undivided roads. There is 
anecdotal evidence that close following is a means to prevent other drivers from merging in front. This is 
similar to the ‘hampering’ strategy by Iwamura and Tanimoto (2018). In this regard, tailgating is part of the 
chicken-type social dilemma. 

6. Desired speed. In relation to social interactions the hypothesis is that drivers may increase speed beyond 
their “regular” or “comfortable” desired speed during overtaking, which may have multiple effects. 
Increasing desired speed may close gaps for other vehicles wanting to cut in, or, it may do the opposite, that 
is, create gaps for vehicles to merge into. Decreasing desired speed affects the desire to overtake of the 
“ego-vehicle” and at the same time increases the desire to overtake of followers. 

7. Lane change desire. Although the desire to change lanes can be conceptualised very differently (e.g. using 
trade-offs in discrete choice models (e.g. Farah and Toledo, 2010), or using thresholds in continuous 
incentive-based models (e.g. Schakel et al., 2012; Kesting et al., 2007)), our hypotheses in relation to social 
interactions can be tested in all such frameworks. We propose that, on top of many other reasons to change 
lanes, drivers have an explicit and dynamically changing desire to either get out of the way of (tailgating) 
followers, or to stay out of way of drivers closing in quickly on the prospective target lane (i.e. to postpone 
a lane change). This desire is a function of other driver traits (e.g. desired speed) and circumstances. 

2.2. Requirements: social interactions and mesoscopic characteristics 

2.2.1. Social interactions 

Consider a hypothetical example of a rather slow-moving personal car overtaking a truck. Before commencing 
the lane change movement, the driver in this car may allow a few fast-approaching vehicles to overtake the truck 
first. When overtaking the truck, the driver may increase speed beyond his/her regular desired speed as more fast 
driving (tailgating) vehicles are approaching. Finally, as soon as a suitable gap is available, the driver changes back 
to the slower lane after which the process may repeat itself.  

8. The theory should predict plausible and explainable social interactions (such as the truck overtaking 
process described above). 

 
2.2.2. Mesoscopic traffic flow characteristics  

 
The key idea is that these microscopic behaviours (dynamics in desired speed, desired headway and lane change 

desire) affect mesoscopic traffic flow characteristics such as lane change frequency, platoon lengths and headway 
distributions. The behaviours also increase the realism and descriptive power of microscopic driving models. 
Depending on the implementation and parameter values, macroscopic traffic flow characteristics such as capacity 
and the capacity drop may also be affected. However, since existing models are already able to reproduce many 
macroscopic effects and phenomena, we focus on requirements at the mesoscopic scale.  
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9. The theory should predict realistic lane change frequencies. As this depends heavily on the network and 
traffic density this is a circumstance-specific requirement. Knoop et al. (2012) found an average of 2.0-
2.5km between lane changes, whereas Schakel et al. (2017) found an average of around 1.35-1.55km.  

10. Similarly, the theory should predict plausible headway distributions and platoon lengths. Also these 
depend heavily on traffic density. Several researchers have found that the headway distribution has a peak 
around 1.5s and a bulk between 1.0-2.0s (e.g. van Beinum, 2018). A wider headway distribution implies 
(more) short and compact platoons. 

11. Disturbances should be caused by lane changes, as Ahn and Cassidy (2007) found empirically to be the 
case. 

12. The theory should be parsimonious. We aim for the minimally required conceptualisation that reproduces 
plausible social interactions on multi-lane motorways and meets these requirements. 

2.3. Summary 

In summary, the starting points for our theory are four lane change strategies, which we aim to conceptualise 
using mechanisms that describe the dynamics of desired speed, desired headway, and lane change desire. These 
dynamics should result in social interactions (tailgating, get/stay out of the way behaviour) and in realistic 
mesoscopic traffic flow phenomena, in particular lane change frequency, headway distribution and platoon lengths. 

3. Theory of driving strategies 

The theoretical consideration in the previous section are conceptualized in a theory. We first discuss two new 
driver traits, and then describe a quantitative mechanism that uses these to reproduce the behaviours discussed in the 
previous section. 

 
3.1. Ego-speed and socio-speed sensitivity 
 

We conceptualise the four driving strategies using two new key driver traits, ego-speed sensitivity and socio-
speed sensitivity. We define: 

 
 Ego-speed sensitivity; the extent to which drivers are willing (to act) to increase their speed. The value may for 

example be a product of risk-aversion, lane change aversion, and being in a hurry. 
 Socio-speed sensitivity; the extent to which drivers are willing (to act) to escape social pressure of following 

traffic that wants to drive faster. The value may be a product of risk-aversion, aversion to social pressure, and 
being in a hurry. 

 
The traits ego-speed sensitivity and socio-speed sensitivity create a plane as in Fig. 1, in which we describe ego-

speed sensitivity with parameter ε, and socio-speed sensitivity with parameter σ. The plane is divided into four 
quadrants, which coincide with the lane change strategies of Keyvan-Ekbatani et al. (2016), and also correlate to the 
strategies by Iwamura and Tanimoto (2018). 

The population of drivers is distributed over this plane by their individual values of ε and σ. Speed leading drivers 
have high ego-speed sensitivity and low socio-speed sensitivity. In the case of socio-speed leading there is notable 
response to social pressure, by speeding up and changing lane out of the way. Lane leading drivers have low 
sensitivity overall and tend to stay in a lane. Finally traffic leading drivers have low ego-speed sensitivity and high 
socio-speed sensitivity, and are thus novice or insecure drivers. 

5 



 Wouter Schakel et al. / Proceedings of the 24th International Symposium on Transportation and Traffic Theory 

 

Fig. 1. Driving strategies in a 2-dimensional plane consisting of ‘ego-speed sensitivity’ and ‘socio-speed sensitivity’. 

3.2. Social pressure and tailgating 

Social interactions are formalized with a dynamic state variable for social pressure. The perceived level of social 
pressure depends on the context but it is assumed to be mainly communicated to the leader and through lowering the 
headway, i.e. tailgating. The theory assumes a number of mechanisms based on social pressure. These are described 
in two parts, from the viewpoint of a driver applying social pressure, and from the viewpoint of a driver 
experiencing social pressure.  

If a driver desires to drive faster than the leading vehicle, a social pressure arises. The extent of which depends on 
the ego-speed sensitivity (relation 1 in Fig. 2), and how much the driver wants to go faster than the leader (relation 
2). The social pressure is communicated through increased tailgating (relation 3). However, the leader has a 
circumstantial perception of social pressure that is not directly related to the tailgating, as short headways may have 
other causes such as lane changing. 

 

 

Fig. 2. Traits and behaviors of social interaction. Numbers indicate relations, + / – indicate sign of influence. 

The leading driver has two strategies to alleviate the social pressure. The first strategy is to increase speed 
(relation 4). In Knoop et al. (2018) participants showed to be willing to increase speed by some extent. We assume 
the extent is hampered by the ego-speed sensitivity of the leader (relation 5), and enhanced by the socio-speed 
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sensitivity of the leader (relation 6). Another strategy to alleviate social pressure is to change lane (relation 7). The 
extent of the resulting lane change desire relates to the socio-speed sensitivity (relation 8). Finally, if the leader itself 
is hampered by its leader, the lane change desire is less affected (relation 9). In this way, the leader does not give up 
a spot on the lane if that provides little utility given the circumstances. 

It should be mentioned that relations 7, 8 and 9 obtain an opposite sign if a hypothetical situation on a potential 
target lane is assessed by a driver. Fig. 3 shows typical cases of social interactions between drivers. Fig. 3a shows a 
driver following a truck who may feel considerably suppressed in overtaking this truck in case of high social 
pressure ρ. Fig. 3b shows a driver who has just overtaken a truck and may feel considerably incentivised in changing 
to the slow lane in case of high social pressure ρ. 

 

 

Fig. 3. Typical cases of social interactions in traffic flow. The dark vehicles constitute the Follower-Leader pair considered. One case is “stay out 
of the way” (a); and the other case is “get out of the way” (b). 

3.3. Driving strategy prevalence 

Knoop et al. (2018) show drivers adopt a number of strategies. They find that 96% of drivers (at some point) 
adopt speed leading, 53% adopt socio-speed leading, 74% adopt lane leading, and (only) 1% adopt traffic leading. 
Note these percentages do not add up to 100%, since it is unknown for what percentage of time and under what 
circumstances drivers follow what strategy. Drivers may adopt all of them, or a selection, under specific 
circumstances. Either way, we conceive both ego-speed sensitivity and socio-speed sensitivity as (abstractions of) 
driver traits that may vary between drivers and that may even dynamically change as drivers encounter different 
conditions. Some drivers may simply have sensitivities which places them close to multiple quadrants, associating 
their behaviour with multiple strategies. Moreover, it is unclear at what value of ε and σ the behaviour can be 
considered to belong to one strategy or another. It is likely that the distribution should be weighted towards the 
upper left corner (speed leading) in Fig. 1, while the plane as a whole should cover values in a feasible range. 
Finally, the findings in Knoop et al. (2018) need not be representative. Note that in this paper we will apply 4 
different 2-dimensional distributions, each designed to favour one of the strategies, to assess the impacts of each 
strategy more clearly. 

4. Model for verification 

To assess the effects of driving strategies as proposed in the theory, this section explains a quantitative 
implementation for simulation. 

 
4.1. Simulation framework 
 

Although multiple methodologies are possible to implement the framework for driving strategies, we apply 
LMRS (i.e. previously developed by the authors) as a main platform for the mathematical implementation of the 
novel model proposed in this paper. This choice is based on the fact that LMRS in combination with IDM+ for car-
following has been shown to accurately describe speed differences between lanes, as well as the distribution of 
traffic over the lanes for various density levels (Schakel et al., 2012). Moreover, the model can be easily extended 
with additional lane change incentives and other modules. Finally an efficient implementation is available in 
OpenTrafficSim (van Lint et al., 2016). In the discussion section we discuss how the framework presented may also 
be used in conjunction with other lane changing models. For convenience, we list the variables and parameters used 
in the ensuing sections in Table 1. 

a) b) 
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Table 1. Notation as used in the mathematical description. 

Symbol Description 

ε Ego-speed sensitivity (in this paper ε = vgain
-1). 

σ Socio-speed sensitivity. 

ρ Social pressure. 

F, L, F', L' Follower and leader pair, prime (') indicates a potential situation. 

a Maximum desired acceleration. 

b Maximum comfortable deceleration. 

v, v0, Δv Current speed, desired speed, and approaching speed to the leader. 

vlim, fspeed, vmax Speed limit, the adherence factor, and max. vehicle speed, used for v0. 

δ Reduction parameter of maximum acceleration as speed increases. 

T, Tmin, Tmax Current, minimum, and regular desired car-following headway (time). 

s, s* Current gap, and approaching speed dependent desired gap (distance). 

d, dr, ds, db, dσ Total lane change desire, and desire to follow the route, gain speed, keep right, and due to social pressure. 

vgain Potential speed gain that constitutes full lane change desire (ds = 1). 

x0 Anticipation, or look-ahead, distance. 

θv Inclusion factor of voluntary (all but dr) lane change desires. 

dfree, dsync, dcoop Desire thresholds for free, synchronized, and cooperative lane changes. 

vcrit Critical speed (lower speeds are considered congestion). 

Δleft/right Physical and legal lane change possibility to the left or right lane. 

qmax, qsat Maximum flow and saturation flow (i.e. flow during congestion). 

kroad
c Density at cross-section c, derived from all lanes. 

qi, ki, vi, fi Flow, density, speed and flow fraction of lane i at a cross-section. 

nS Number of 1-minute measurements during congestion. 

nc Number of lanes at cross-section c. 

4.2. Original LMRS model 

This section recalls some of the main principles and parameters of the applied base model. The Lane change 
Model with Relaxation and Synchronization (LMRS) (Schakel et al., 2012) was developed to accurately match lane 
speeds and distribution of traffic over lanes by considering a number of lane change incentives that result in a lane 
change desire d. Equation (1) shows that a balance is found between desire to follow the route and infrastructure dr, 
to gain or maintain speed ds, and a bias for a right-keeping rule db. Each of the three incentives is determined based 
on circumstances. For details the reader is referred to Schakel et al. (2012). The voluntary incentives ds and db are 
included with a factor θv, which approaches 0 as dr increases such that a balance between all incentives is made 
based on urgency. 

 
 

r v s bd d d d  (1) 

 
The level of lane change desire determines resulting lane change behaviour. Four regions are distinguished by 

thresholds as in equation (2). Below dfree, no lane change is considered. Free lane changes (FLC) may be performed 
for dfree ≤ d < dsync, to the degree it is possible. Synchronized lane changes (SLC) are performed for dsync ≤ d < dcoop, 
meaning that a driver synchronizes speed and position to a gap in the target lane to enhance lane change 
opportunities. Finally, for dcoop ≤ d the potential follower in the target lane additionally cooperates (CLC) to create a 
gap. Both synchronization and cooperation are modelled by applying the car-following model to the leader in the 
appropriate adjacent lane, albeit with limited maximum deceleration. 
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 0 1free sync coopd d d  (2) 

 
Additionally, the level of lane change desire determines risk taking in gap-acceptance. For larger lane change 

desire, the acceptable deceleration increases, and the acceptable headway decreases. Accepting short headways 
during a lane change, and relaxing the headway back to normal values afterwards, is known as the relaxation effect 
(Laval and Leclercq, 2008). The key parameters here are the regular headway Tmax and the minimum acceptable 
headway (at maximum lane change desire) Tmin, we return to these below, because they play an important role in the 
tailgating principle. The maximum acceptable deceleration at full lane change desire is b, which is also explained 
below. Other parameters used to determine the desire from the three incentives are also used in the model extensions 
described in the next section. These are anticipation distance x0, which can be regarded as a look-ahead distance; a 
threshold speed below which drivers consider traffic as congested vcrit; and vgain, which is a speed difference between 
lanes for which lane change desire ds is maximal.  

The IDM+ car-following model (Schakel et al., 2010) is an adaptation of the original IDM model (Treiber et al., 
2000), in which free driving and car-following are decoupled, so that more realistic capacity distributions emerge 
(Schakel et al., 2012)—see equation (3). Acceleration is a function of incentives ego-speed v, speed difference with 
the leader Δv and net distance headway s, with parameters desired speed v0, maximum acceleration a, maximum 
comfortable deceleration b, stopping distance s0 and desired headway T. Note that T is dynamic in our case and 
between Tmin and Tmax. The value of δ describes how slowly acceleration reduces as speed increases, and usually a 
value of 4 is used (Treiber et al., 2000). 

 

 

2*

0

*
0

min 1 ,1

2

v sv a
v s

v vs s v T
a b

            
 (3) 

4.3. Implementation of social driving strategies in LMRS 

In this section we introduce new elements to the LMRS which capture the behaviour of the driving strategies 
introduced above. First, we introduce the ego-speed sensitivity (ε) dimension, which is already present in the LMRS, 
after which the socio-speed sensitivity (σ) dimension is elaborated.  

In the LMRS model, the parameter vgain describes at what speed difference between lanes a maximum lane 
change desire arises. The lower vgain, the more sensitive a driver is to ego-speed, since lower speed differences 
between lanes already result in maximum lane change desire. Equation (4) thus describes a suitable linkage of ε to 
the LMRS. 

 
 1 gainv  (4) 

 
A new variable is required for the inclusion of socio-speed sensitivity σ, which is the only new LMRS parameter 

we introduce. This satisfies parsimony (consideration 12, section 2). 

4.3.1. The social pressure construct 

A key effect we aim to establish is that social pressure ρ = ρF is perceived by a leader and exerted by a follower
2,3. In this section we refer back to the relations indicated in Fig. 2. We construct the social pressure exerted by a 
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follower as proportional to v0
F – vL, with vL the speed of the leader and v0

F the desired speed of the follower (relation 
2). For drivers with larger ego-speed sensitivity ε, the applied pressure is larger (relation 1). Equation (5) describes a 
mechanism that establishes this. First, equation (5) includes a distance factor (1 – s/x0

F), such that social pressure 
diminishes for leaders far away (recall x0

F represents a max-look-ahead distance in the LMRS model). Secondly, we 
use an exponential function such that behaviours from social pressure quickly arise but stabilise fairly quickly as 
well. So, for ρ↑1 (i.e. large speed differences and/or small gaps combined with high ego-speed sensitivity of the 
follower) drivers show behaviour that is as risky as they are willing to allow. 

 

 0 0 0
0

1 exp 1 , and

0, otherwise

F L F F L F
F F

sv v v v s x
x

   
       



 (5) 

 
To ensure that tailgating takes place, we require a mechanism that enables followers to “pressure” leaders (also 

those not sensitive to this pressure) with short following time headways. The LMRS provides a natural way to do 
this. To model relaxation, the desired headway T is already dynamic between Tmax and Tmin in the relaxation case. 
When a lane change is initiated, the current value of T is set to some lower value, whereas every consecutive time 
step the headway is relaxed towards Tmax. Similarly, in case of social pressure, the desired headway of the follower T 
can be kept low by setting it according to equation (6) (relation 3). Here, T' is the desired headway according to the 
relaxation phenomenon. Should social pressure disappear, for instance because the leader changes lane, the value 
will then relax to Tmax by T', the restrictive term in equation (6) for low values of ρ. 

 
 min , 1min maxT T T T  (6) 

 
With these ingredients we can now affect the leaders’ driving behaviour by the social pressure from the follower. 

For this behaviour we use parameter σ as a value in the range [0…1], where 0 means a driver is not sensitive to the 
social pressure of other drivers, while 1 means the driver is very sensitive. We explain how these mechanisms work 
below. 

4.3.2. Adapting LMRS lane change incentives and desired speed model 

We first discuss how we change lane change desire. The basic idea of our implementation is to include an 
additional lane change incentive dσ for socio-speed sensitivity to the LMRS, changing equation (1) into equation (7). 

 
 

r v s bd d d d d  (7) 

 
This incentive may reduce lane change desire towards the faster lane (to stay out of the way of faster “followers” 

on that lane), and/or it may increase lane change desire towards the slower lane (to get out of the way). Fig. 4 and 
Table 2 show the same two cases as Fig. 3, now annotated with the LMRS lane change desire. The two cases are 
essentially mirrored, except that in the “stay out of the way” case (Fig. 4a), the follower of the truck in the slow lane 
considers a hypothetical situation in which it drives on the faster lane. This hypothetical situation is denoted by 
prime (') where relevant. 

 

                                                                                                                                                                                           
2 In principle, social pressure may also be conceived as a more complex function of behaviours from vehicles upstream (in the simplest case a 

summation ρ = Σiρi
F), but we leave this generalisation for future work. As it turns out, considering social pressures between single pairs of leaders 

and followers (either on the same or different lanes) already leads to rich improvement of lane change dynamics.  
3 Note that ρL denotes the social pressure that a leader exerts on its leader. 
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Fig. 4. Socio-incentive when considering a lane change to the faster lane (a), and socio-incentive to the slower lane and increased desired speed 
(b). For a conceptual explanation, see Fig. 3; for implementation details in the LMRS, see running text. 

We first explain the increased desire to change to the right lane in order to get out of the way (Fig. 4b). Recall 
that the extent of the lane change desire depends on σ such that socio-speed sensitive drivers are more prone to get 
out of the way. Hence, we model the extent of this new lane change desire with σρF, which is a value between 0 and 
1 as the LMRS requires. The incentive is more complex in terms of the conditions that need to apply for the socio-
speed incentive (and the associated behaviour) to be considered by a driver. These conditions (in order of priority) 
are: 

 
 Δright = 1; a lane change to the right lane is possible and legal. 
 dr

right ≥ 0; lane change desire dictated by infrastructure/route does not conflict. 
 v > vcrit; there’s no congestion (there is no point as traffic is constrained then). 
 σρF > ρL; this implements relation 9 in Fig. 2 by considering the social pressure from the follower (with 

sensitivity), and comparing it to the social pressure of the leader. 

Table 2. Conditions and extent of socio-lane change desire. 

Conditions/extent Target lane 

 Left Right 

Infrastructure allows lane change Δleft = 1 Δright = 1 

No conflict with route desire dr
left ≤ 0 dr

right ≥ 0 

Free flow v > vcrit v > vcrit 

Sufficient social pressure σρF’ > ρL’ σρF > ρL 

dσ if conditions apply –σρF’ (stay out of way) σρF (get out of way) 

 
If these four conditions apply, we set dσ = σρF, otherwise “0”. These conditions and the resulting incentive to 

move towards the right (slow) lane are summarized in the right most column of Table 2. The other case, that is, a 
decreased desire to move to the left (the fast lane), is essentially the mirror image of the increased desire to move to 
the right (the slow lane). As a result, it differs in sign only.  

We now finally discuss how we increase the desired speed during overtaking for socio-speed sensitive drivers. 
The resulting desired speed model is given in equation (8). We denote the “unaffected” desired speed with v0

' = 
min(vmax, fspeedvlim). The extension of the model is the term Δv0 that can be up to σρF/ε depending on vmax. With ε = 
1/vgain this results in σρFvgain specifically for the LMRS. In illustration, in case of high social pressure (e.g. ρF = 0.75) 
and the strategy socio-speed leading (e.g. vgain = 25km/h, σ = 0.75) the speed is increased by 14km/h. 

 

 
0 0 0min ,

L

max speed limv v f v v v
 
 
 

 (8) 

 
To summarize, we extend the LMRS with a notion of social pressure ρ applied to the leader which depends on 

the ego-speed sensitivity ε. This leads to tailgating of the follower, which in turn has two behavioural effects on the 
leader. The leader has increased lane change desire and increased desired speed, depending on its socio-speed 
sensitivity σ and its ego-speed sensitivity ε. As a final note: for readability purposes we will further below refer to 

a) b) 
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different settings for vgain rather than for ε (= 1/vgain), since these translate to speeds and are more easily 
interpretable. 

5. Evaluation methodology 

This section describes the methodology to evaluate the effects of driving strategies on traffic flow. We first 
describe the simulation setup, and then the scenarios and performance indicators. 

 
5.1. Simulation setup 
 

The strategies are tested on a 7km long motorway stretch depicted in Fig. 5 and simulated in OpenTrafficSim 
(van Lint et al., 2016), with a lane-drop from 3 to 2 lanes after 4km. This is the simplest network to create all 
situations the theory is sensitive to. The lane-drop causes mandatory lane changes and allows the strategies to be 
tested in case of congestion and free flow. The speed limit is set to 120km/h. All strategies are tested for a low and a 
high demand scenario, with peak demands of 3500veh/h and 5500veh/h respectively. During a 5-minute warm-up 
period, demand is at 60%. In the next 40 minutes demand increases linearly to peak demand, to reduce to 0 at the 
end of simulation after 65 minutes. The simulation time step is 0.5s. 

 

 

Fig. 5. Network (a) and demand (b). 

The percentage of trucks is fixed at 10%. Trucks are simulated with socio-speed sensitivity σ = 1 and vgain = 
50km/h. This assures that trucks are mostly driving on the right-hand lane. Note that we are simplifying here, since 
trucks of course do overtake for marginal speed gains in reality. This is beyond the scope of this paper. Due to the 
stochastic nature of the simulation environment, each scenario is run 30 times (with 30 different seeds) to obtain 
reliable indicators. 

5.2. Simulation scenarios 

The strategies are compared by defining a scenario for each driving strategy, where the weight of the ego-speed 
sensitivity and socio-speed sensitivity distribution is in one of the four quadrants of Fig. 1. Additionally, we include 
a base scenario of the LMRS without extensions. We assume drivers may have different ego- and socio-speed 
sensitivities, so we model these differences by drawing vgain (= 1/ε) and σ from distributions. For the ego-speed 
sensitivity we use a log-normal distribution to provide positive values of vgain. The standard deviation of the 
underlying normal distribution is 0.4, chosen for a reasonable spread. Socio-speed sensitivity σ is distributed with a 
triangular distribution with strict minimum and maximum of 0 and 1. The defined scenarios along with the 
parameters’ distributions are listed as follows (shown in Fig. 6): 

 
 
 
 

a) b) 
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 Base;   base LMRS without extensions 
 Speed leading;  vgain mode of 25km/h, σ mode of 0.25 
 Lane leading;   vgain mode of 50km/h, σ mode of 0.25 
 Socio-speed leading; vgain mode of 25km/h, σ mode of 0.75 
 Traffic leading;  vgain mode of 50km/h, σ mode of 0.75 

 

 

 

Fig. 6. Normalized distributions of σ and vgain for the four strategies. 

Since tailgating is applied in the four strategy scenarios, Tmax should be increased to reach an effective headway 
value similar to the base LMRS, and hence similar capacity. Given that speed leading is the most prevalent strategy, 
we have chosen to match mean maximum flow and mean saturation flow in the speed leading scenario with the base 
LMRS, and hence choose a parameter value of Tmax  = 1.6s. For the base scenario Tmax equals 1.2s since no tailgating 
applies. Other important default parameters, which are shared among all five scenarios for good comparison, are: 
acar = 1.25m/s^2, atruck = 0.4m/s^2, b = 2.09m/s^2, fspeed = N(1.03,0.1), vmax,truck = N(85,2.5) [km/h], x0 = 295m, vcrit = 
60km/h, and Tmin = 0.56s. All the parameter values are based on the calibration efforts in (Schakel et al., 2012). 

5.3. Assessment indicators 

We assess the effects in 4 ways: (1) qualitative assessment of the trajectories, (2) quantitative assessment of the 
number of lane changes, (3) quantitative assessment of the distribution of platoon length and headways and (4) an 
assessment in to the number of lane changes as we introduce separate parts of the model.  
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So first, the social interactions of the driving strategies are qualitatively illustrated by comparing the base 
scenario and the speed leading scenarios (both with low demand). We show the vehicle positions. For visualization 
purposes, we show them relative to a subject vehicle by subtracting its position from all trajectories, resulting in 
gross headway to the subject vehicle. A truck is selected for the analysis, as trucks are moving slowly. Other traffic 
will generally move faster (hence traffic moves forward also in this frame of reference) and trucks form moving 
bottlenecks around which cars manoeuvre according to the strategies. All other performance measures are computed 
with (densely spaced simulated) loop detectors. 

The number of lane changes (left and right) categorized by the largest incentive causing them is derived on the 
section from 2km to 6km for each lane. We also include the average distance between two consecutive lane changes 
of a single vehicle by dividing total vehicle mileages over the total number of lane changes. Here, total vehicle 
mileage is approximated by taking 70% of the peak demand (which is average demand) and multiplying by the 
section length of 4km (and by 1-hour simulation time). 

Platoon distribution and headway distribution are derived. Platoon distribution is derived as the probability a 
vehicle is found in a platoon of specific size (not the probability a given platoon has a certain size). Two consecutive 
vehicles are considered to be part of the same platoon if their gross headway is less than 3s, as measured by their 
nose moving over the detector. Headway distributions are given by counting the number of measurements in bins of 
0.1s width, up to 5s. 

Finally, the number of lane is assessed as we introduce separate parts of the model: ego-speed sensitivity, socio-
speed sensitivity and tailgating. To this end we define two additional scenarios: 

 
 Ego-speed sensitive; base scenario with vgain = 25km/h. This scenario introduces to the base scenario an ego-

speed sensitivity at a comparable level to the speed leading scenario. 
 No tailgating; Speed leading scenario without tailgating and with Tmax = 1.2s. This scenario introduces socio-

speed sensitivity. As tailgating is still excluded, comparison with the speed leading scenario allows to assess the 
impact of tailgating. 

6. Results 

This section presents and discusses important findings from simulating the novel driving behaviour, proposed in 
this paper. We start with a qualitative analysis in which we demonstrate and face-validate that the addition of socio-
sensitivities leads to new realistic behaviours in line with our theoretical framework. This is followed by a 
comparative quantitative appraisal of the proposed simulation scenarios by looking at the number of lane changes 
and the distributions of headways and platoon lengths. At the end, analysis is carried out to distinct individual 
contributions of the social phenomena to the number of lane changes. This sections refers to the theoretical 
considerations from section 2. 

 
6.1. Qualitative evaluation 
 

A qualitative analysis of the behaviours implied by driving strategies is shown in Fig. 7 for a run of the base 
scenario (Fig. 7a-b) and the speed leading scenario (Fig. 7c-d). In each graph, on the vertical axes, distance gaps 
between trajectories are given relative to a truck driving on the right lane during the time it moved from 4km to 7km 
(in the two-lane section). The colouring of each relative trajectory is informative of the driver’s desired headway T 
[s]. Trucks are represented as black dotted lines. Trajectories of vehicles on the other lane are shown as grey dashed 
lines.  

Let us first note that in both scenarios (Fig. 7a-b and c-d) social phenomena can be observed (consideration 8). 
Clearly, in the base scenario (Fig. 7a-b), drivers—incentivised by the three standard LMRS components—overtake 
other drivers by changing left and changing right again after the act (red dashed arrows). Conversely, drivers are 
being overtaken by other drivers by changing right and—at some point—by changing back left again (dots in 
figure). There are however also social phenomena occurring in the speed leading scenario, that do not occur in the 
base scenario (consideration 7), but do arise in the other (three) driving strategies as well, albeit with different 
frequencies. These are: 
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Desired headway [s] 

 
  Vehicle being overtaken just after having changed right, and just before changing back left. 
  Vehicle changing left to overtake and changing back right after the overtake(s). 
  Disturbance caused by a vehicle changing to the left lane. 

Fig. 7. Qualitative assessment of social interactions in the base scenario (a-b) and speed leading scenario (c-d). Headways are relative to a truck 
on the right lane during the time it moved from 4km to 7km (in the two-lane section). Trucks are represented as black dotted lines, while cars are 
coloured by the desired headway T [s]. Trajectories of vehicles on the other lane are shown as grey dashed lines. 

 Disturbances on the left lane due to lane changes, indicated by continuous arrows in Fig. 7 (consideration 11). 
 Circumstantial change of desired headway due to social pressure, i.e. tailgating and preventing lane changes in 

front (consideration 5). For instance, small desired headways (where trajectories are coloured blue) are seen 
where the left lane is disturbed (slow). For some vehicles the same is found on the right lane, while experiencing 
difficulty in changing left due to short headways on the left lane. 

 Circumstantial change of desired speed, which is inferred by the change in desired headway due to social 
pressure (consideration 6). 

 

a) b) 

c) d) 
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To further understand the behaviours we looked at the values of vgain, σ and fspeed of some of the individual 
drivers. We start with four vehicles that during the timespan shown, remain behind the truck in the speed leading 
scenario, indicated by the four horizontal trajectories underneath the (black) truck trajectory in Fig. 7d. The first two 
are socio-speed leading (consideration 2), where the socio aspect determines behaviour due to low desired speed or 
sensitivities more towards socio. The other two drivers tend much more to lane or traffic leading (considerations 3 
and 4). 

We now focus on four other vehicles in the speed leading scenario (i.e. in Fig. 7d) indicated by dashed arrows 
that change left from behind the slow vehicles and the truck, to overtake and then change back to the right lane. 
These drivers are speed leading (consideration 1), which explains the lane change to the fast lane. The lane changes 
back to the slower lane are due to disturbances (i.e. temporary lower speeds) on the fast lane. 

6.2. Number of lane changes 

Table 3 shows the number of lane changes performed for each scenario, categorized by lane, direction and by the 
largest of the four incentives involved. This results in nine sensible categories. For instance for the first lane changes 
column ‘3>’ indicates lane changes from the left lane (3rd as counted from the right) to the middle lane. The symbol 
dr indicates that the route incentive had the largest desire for this lane change. 

Table 3. Number of lane changes compared to base scenario by type (determined by largest incentive), lane and direction in the range from 2km 
to 6km. 

 Scenario Lane changes1 Total Km/lc 

 3> 3> 3> 3> <2 2> 2> 2> <1   

 dr ds db dσ ds ds db dσ ds   

Lo
w

 d
em

an
d 

Base 307 0 113 0 47 0 1105 0 916 2488 3.9 

Speed leading +252 +0 +107 +6 +147 +1 +459 +36 +405 +1415 2.5 

Lane leading +68 +0 +3 +1 +9 +0 -133 +6 -157 -204 4.3 

Socio-speed leading +218 +0 +80 +12 +117 +0 +277 +95 +284 +1084 2.7 

Traffic leading +55 +0 -2 +2 +2 +0 -183 +16 -205 -315 4.5 

H
ig

h 
de

m
an

d 

Base 1012 1 462 0 463 20 1769 0 1091 4818 3.2 

Speed leading +463 +98 +848 +32 +1308 +149 +1080 +128 +1441 +5548 1.5 

Lane leading +226 +21 +370 +20 +660 +60 +280 +64 +517 +2217 2.2 

Socio-speed leading +423 +90 +718 +105 +1220 +129 +773 +323 +1316 +5097 1.6 

Traffic leading +224 +17 +378 +74 +719 +56 +184 +158 +509 +2320 2.2 
1) The number indicates the lane from which the lane change is made counted right to left: 3 | 2 | 1. The direction of the lane change is indicated 
with > (right) or < (left). The largest incentive for the lane change is given by d. 

 
In the low demand scenarios, the lane leading and traffic leading strategies reduce the number of lane changes 

compared to the base scenario. The negative socio-speed incentive reduces the number of lane changes made from 
the right lane to the middle lane (<1) for speed (ds). With fewer slow drivers on the middle lane, also less lane 
changes from the middle to the right lane (2>) to keep-right (db) are performed. In the high demand scenario, we see 
a significant increase in all lane changes caused by all lane change incentives. This is emphasized in the right-most 
two columns of Table 3, which show the totals over all incentives and the average travelled distance between lane 
changes. The resulting distance between lane changes is similar to empirical findings (consideration 9). 

6.3. Platoon and headway distribution 

There appears to be a clear relation between distribution of platoon sizes and the four driving strategies 
(consideration 10). This is shown in Fig. 8a which shows platoon sizes of platoons passing at 500m before the lane-
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drop under high demand—but this phenomenon is also found on other cross-sections and under low demand. The 
results indicate the order of equation (9) in resulting platoon sizes, where Li is the platoon size for scenario i in 
vehicles at any given cumulative probability. 

 
 

(socio-)speed leading lane and traffic leading baseL L L  (9) 

 
In other words, high ego-speed sensitivity leads to traffic flows with the smallest platoon sizes, followed by low 

ego-speed sensitivity, and the base case without social interactions. Socio-speed sensitivity by itself seems to have a 
limited effect on platoon sizes or on headway distributions. This is illustrated by the fact that speed leading and 
socio-speed leading, as well as lane leading and traffic leading, have very similar curves in Fig. 8. Particularly on 
the left lane (Fig. 8a) the difference between the base scenario and all other scenarios is remarkable, which is likely 
due to much fewer lane changes between the left and middle lane. 

 

  

Fig. 8. Platoon distribution at high demand (a) and headway distribution below 5s at low demand (b) on the left lane 500m upstream of the lane-
drop. 

Headway distributions are affected by the driving strategies as well, as Fig. 8b shows. All strategies have the 
effect of dispersing the headway distribution wider than in the base case, where the (socio-)speed leading strategies 
result in the largest variance. With a peak around 1.5s and a bulk between 1.0-2.0s, this is in line with empirical 
(consideration 10). We also found that platoon size distributions and headway distributions look more similar 
between the different driving strategies (including base) on the middle lane, as this lane is much more saturated. 

To shed more light on the separate contributions of ego-speed sensitivity; socio-speed sensitivity and tailgating 
on the results we discuss the two additional scenarios introduced in section 5.2 in the next section. In particular, we 
will test the maximum flows, saturation flows and number of lane changes resulting from introducing these three 
components. 

6.4. Sensitivity analysis on social phenomena 

By introducing the separate social components of the model, the effects of the separate components on the 
number of lane changes can be assessed. This starts with the base scenario (no components) and ends with the speed 
leading scenario (all components). Two additional intermediate scenarios are used to introduce individual 
components, see Fig. 9. 

A comparison between the ‘base’ scenario and ‘ego-speed sensitive’ scenario shows that introduction of ego-
speed sensitivity (by means of a lower vgain value) considerably increases the number of lane changes. However, the 
higher value of vgain in the base scenario is a calibrated value and lowering it introduces disturbances and hence 
lowers capacity. Such disturbances are reduced by introducing socio-speed sensitivity, which the ‘no tailgating’ 

a) b) 
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scenario does. The number of lane changes is somewhat reduced, but the socio-speed sensitivity seems to mostly 
reallocate lane changes to more appropriate times. Finally, comparison of the ‘no tailgating’ and ‘speed leading’ 
scenarios shows that introducing the tailgating phenomenon increases the number of lane changes once more. This 
may appear counter-intuitive, but note that the tailgating phenomenon mainly widens the distribution of headways 
(as we have selected Tmax = 1.6s in the speed leading scenario to result in a similar mean). The occurrence of larger 
headways allows more lane changes. 

 

 

Fig. 9. Number of lane changes by introducing different social interactions. 

These findings can be summarized as follows. The ego-speed sensitivity makes drivers want to change lane more. 
The socio-speed sensitivity makes them wait for more appropriate times. And tailgating creates platoons between 
which available gaps are present. One could even postulate that without such gaps, drivers would likely not develop 
socio-speed sensitivity to the extent that they actually do in the first place. 

7. Discussion and conclusions 

In this paper we discussed the fact that there are social interactions on multi-lane motorways and formulated a 
theory. The theory conceptualizes four empirically found lane change strategies on a two-dimensional plane of ego-
speed sensitivity and socio-speed sensitivity. Using the concept of social pressure, the theory proposes several 
behaviours: tailgating, increasing speed, lane changing or delaying a lane change. 

 
7.1. Discussion 
 

The theory introduces endogenous mechanisms of social interactions that affect desired headway, desired speed 
and lane change desire. It is likely though that the desired headway is the result of many factors, including the 
modelled relaxation phenomenon and social pressure, but also other factors. This includes more social interactions. 
For example, the leading driver may slow down to communicate disapproval of tailgating. Reason to (not) change 
lane and the desired speed are similarly complex and multi-facetted. The theory does however introduce prominent 
social interactions that result in mesoscopic traffic flow characteristics in line with empirical data, regarding lane 
change frequency and headway distributions. Primarily the theory adds a social dimension to models. It should be 
noted that none of the drivers in the study of Keyvan-Ekbatani et al. (2016) mentioned the follower as a direct 
influence on their lane change strategy and a reason to change lane. However, survey participants did mention their 
reluctance to hinder other traffic too much and also addressed that being followed too closely could be a reason to 
change lanes, as a source of annoyance. 

This paper applied the theory into a model, for which we chose the LMRS (Schakel et al., 2012). The theory can 
be implemented in other models as well. Microscopic simulation models typically have a parameter that reflects 
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ego-speed sensitivity in the quantification of changing lane for speed. Not many models however have a social 
parameter. An exception to this is MOBIL (Treiber and Kesting, 2009), which has a politeness factor regarding the 
acceleration of surrounding drivers. Gipps (1986) uses a speed threshold to persuade drivers to change back to a 
slower lane after overtaking. At the moment this is independent of following traffic, but a dynamic extension can be 
conceived. The same holds for Toledo et al. (2003) who include within the lane utility a negative term in case of 
tailgating, encouraging drivers to change from the current lane. In any case, social mechanisms need to be 
operationalized based on such parameters that reflect the relations from Fig. 2. Only then are mesoscopic traffic 
flow phenomena endogenously modelled, allowing research in developments that may affect them. Socio-speed 
sensitivity may also be related to courtesy lane change; lane changes by which drivers create space for the lane 
change of another vehicle, typically for merging on the motorway. 

In terms of road layouts, it should be investigated whether the social interactions can also successfully be applied 
on more complex networks with multiple discontinuities, like weaving areas, ramps, or diverges, meaning that 
macroscopic traffic flow characteristics are unaltered or improved, while introducing social interactions on the 
micro- and mesoscopic scale. More research is required into the circumstances under which drivers tailgate, and to 
what extent they do this, including in congestion and in the vicinity of bottlenecks. This may also shed light on why 
the capacity drop is different between bottlenecks. 

Finally, the proposed social interactions are quantified for exploratory purposes of their effects on desired speed, 
desired headway and lane change desire, and consequently the effect on mesoscopic traffic flow characteristics. The 
underlying ego-speed sensitivity and socio-speed sensitivity have been quantified in several scenarios. More 
research is needed on quantifying these traits and social interactions. But already the theory allows to conceptually 
assess impacts of for instance self-driving cars that are or are not socially participating in some of these interactions. 

7.2. Conclusions 

Social interactions are an important part of driving behaviour on motorways that partake in determining 
mesoscopic traffic flow characteristics such as lane change frequencies, headway distributions and platoon lengths. 
The theory we propose explains this by connecting driver traits ego-speed sensitivity and socio-speed sensitivity to 
endogenously affect desired headway, desired speed and lane change desire, which in term affect mesoscopic traffic 
flow characteristics. The endogenous mechanism is based on social pressure, and includes tailgating as a behaviour. 
The theory provides understanding in such mechanisms, and hence partially explains the occurrence of 
heterogeneity in desired speed, desired headway and lane change desire. In particular, it correlates circumstances, 
such as following traffic with specific traits, to variability in such behaviour, not only between drivers, but also for 
one driver over time. 

Important conclusions that follow from the quantification of the theory are: 
 

 Ego-speed sensitivity increases the number of lane changes. 
 Ego-speed sensitivity reduces the size of platoons, and disperses headway distribution. This effect diminishes as a 

lane becomes saturated. 
 Tailgating, as a result of ego-speed sensitivity, explains the above conclusion. Moreover it is shown vital to 

provide lane change opportunities in the form of larger gaps (between platoons) to further increase the number of 
lane changes. 

 Higher socio-speed sensitivity reduces the number of lane changes slightly, but mostly postpones them to more 
appropriate times. 

 At microscopic level the social interactions show typical behaviours such as overtaking trucks and re-ordering 
based on desired speed whenever the slower lane allows. 

 Ego-speed sensitivity makes lane changes a more pronounced disturbance. 
 

These insights are important for a wide range of research and applications. Studies around driving styles can be 
focussed around these themes and theory. This might give a better insight on the elements to study in further 
research projects. The findings thereof are also relevant for the future of traffic systems when drivers are more and 
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more interacting with machines (self-driving vehicles). The interaction with them can also be placed within the 
framework provided here and consequences of the changing system can in this way be systematically analysed. 
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